Volume 6 Issue 4 December - February 2018
Research Paper
Prediction of Setting and Strength Characteristic of Binary Blended Geopolymer Matrix
A.M.N.Kashyap*, T. Chandrasekhara Rao**, N.V. Ramana Rao***
* Ph.D Scholar, Department of Civil Engineering, JNT University, Hyderabad, India.
** Professor, Department of Civil Engineering, Bapatla Engineering College, Bapatla, India.
*** Director and Professor, Department of Civil Engineering, JNT University, Hyderabad, India.
Kashyap, A.M.N., Rao, T,C.S,. and Rao, N.V.R. (2018). Prediction of Setting and Strength Characteristic of Binary Blended Geopolymer Matrix. i-manager’s Journal on Structural Engineering, 6(4), 16-22. https://doi.org/10.26634/jste.6.4.13911
Abstract
The production of cement generates large amount of carbon dioxide. Normally, conventional concrete is manufactured with Portland cement, which acts as a binder. The production of cement emits CO into the atmosphere, 2 which is a greenhouse gas and causes environmental pollution. In view of this, there is a need to develop sustainable alternatives to Portland cement utilizing the industrial by-products, such as fly ash, Ground Granulated Blast furnace Slag (GGBS) which are pozzolonic in nature. It has been established that fly ash can replace the cement partially. In this context, a new material was developed known as “Geopolymer”.
In this study, various parameters on the short term engineering properties of fresh and hardened properties of Geopolymer Mortar were studied. In the present investigation, cement is replaced by geopolymer source material (fly ash and GGBS) and water is replaced by alkaline activator consisting of Sodium Silicate and Sodium Hydroxide of molarity (12 M). The ratio of sodium silicate to sodium hydroxide adopted was 2.5. The test results showed that final setting time decreases as the GGBS content in the mix increases and also these is increase in compressive strength.
No comments:
Post a Comment